
68 The Delphi Magazine Issue 57

Resolve That Date!
by Martin Lanza

In Issue 47, July 1999, Julian
Bucknall detailed some neat date

manipulation methods and rou-
tines in the regular Algorithms
Alfresco column. I personally found
this article both interesting and
useful (as are most articles in The
Delphi Magazine [Give that man
a Gold Star! Ed]). There was,
however, one area overlooked that
disappointed me and this is proba-
bly a common issue with many
Visual Basic developers who have
migrated to Delphi in the quest for
a better lot in life (sounds like a
subject for One Last Compile?). The
issue at hand is that Delphi is weak
in the area of extracting and other-
wise resolving dates from text
format into the native TDateTime
storage format. I recently found
time to code a more flexible
routine.

The problem at hand is that the
Delphi StrToDate routine expects

three numbers: month names are
simply not accepted. On top of that
the three numbers must be in the
day, month and year order speci-
fied in the Windows date regional
settings. The final blow is that only
the date separator specified in the
Windows date regional settings is
accepted. These constraints make
your average Visual Basic devel-
oper, who takes for granted throw-
ing anything at the DateValue
function, want to spit his false
teeth out! Yes, I know, you can
change many of the environment
variables that control StrToDate,
but why should you have to? In
addition, this forces you to write
more code, saving and restoring
these settings, in case you upset
other processing in your (and
other) projects.

The goal is to have a simple and
friendly routine that does not com-
plain about what order the date
components are in and is not
particular about which date sepa-

rator character has been used. I
feel like I’m covering common
ground here, many of you have
most likely tackled this issue.

A bit of planning before we dive
into a coding exercise. Resolving
numeric values below 13 for dates
is dangerous stuff: is it a day, a
month, or a two-digit year?
Resolving numeric values between
13 and 31 inclusive is only slightly
less dangerous: is it a month or a
two digit year? So here we are at
the start of a new millennium;
during the next thirty-one years we
need to code more defensively
than ever with regard to dates. I
work primarily on treasury soft-
ware and the consequences of
making assumptions about two-
digit years, and date formats in
general, can be very serious, so
I’ve decided to avoid making year
assumptions and mandate that all
years must have four digits. What
can we do to reliably resolve the
difference between a day and
month? Most of the time when we
are importing data from external
sources (files, communications
links, etc) the date format is known
and constant. So all we need to

unit Str2Date;
interface
function StrToDateNew(const sDateText: string;
const bDayB4Month: boolean): TDateTime;

implementation
uses
Windows, SysUtils;

function StrToDateNew(const sDateText: string; const
bDayB4Month: boolean): TDateTime;
{ Try to convert a string into a Date. The year must be a
FOUR digit year. Used PChars for performance, also step
over all rubbish in in a single examination of the input
string. Does not work on international MBCS :-(}

var
sWord: string;
iValue: integer;
bNumeric: boolean;
PBeg, PNex: PChar;
iInx, iDay, iMonth, iYear: integer;

const
ZeroToNine = ['0'..'9'];
Separators = ['|', '/', '\', '-', '_', ',', '.', ' '];

begin
iDay := 0;
iMonth := 0;
iYear := 0;
// Begin at the start of the input date string.
PBeg := PChar(sDateText);
// Skip all leading blanks and separators
while PBeg^ in Separators do
Inc(PBeg);

// Empty input (string) - Empty output (31-12-1899)
// Could raise an exception instead - up to you.
if PBeg^ = #0 then begin
Result := 1;
exit;

end;
// Initialize
sWord := '';
iValue := 0;
PNex := PBeg;
repeat
// Have we got a number ?
bNumeric := (PNex^ in ZeroToNine);
if bNumeric then // Increment our integer value

// 48 = Ord('0')
iValue := iValue * 10 + Ord(PNex^) - 48;

Inc(PNex); // Step forward to the next character ...
if (PNex^ = #0) // End of String
// Process our current item
or (PNex^ in Separators) then begin
if bNumeric then begin // Process iValue
case iValue of
1899..3000 :
iYear := iValue;
13..31 :
iDay := iValue;

1..12 :
if iDay <> 0 then
iMonth := iValue

else if iMonth <> 0 then
iDay := iValue
else if bDayB4Month then
iDay := iValue

else
iMonth := iValue;

end; // Case iValue of
iValue := 0; // Reset

end else begin // Process sWord
// If we don't already have the month see if this
// word is a month name.
if iMonth = 0 then begin
SetString(sWord, PBeg, PNex - PBeg);
sWord := UpperCase(sWord);
if (PNex - PBeg) > 3 then
SetLength(sWord, 3);

iInx := Pos(sWord,
'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC');

if iInx > 0 then
iMonth := Succ(iInx div 3);

end; // if iMonth = 0 then
sWord := ''; // Reset

end; // Process sWord
// Skip any blanks and separators
while PNex^ in Separators do Inc(PNex);
// Set start of next word or value item
PBeg := PNex;

end; // Processed our current item
until PBeg^ = #0;
Result := EncodeDate(iYear, iMonth, iDay);

end;
end.

➤ Listing 1

70 The Delphi Magazine Issue 57

know is whether the day appears
prior to the month; this informa-
tion will be supplied to our routine
to avoid the guesswork.

Our new function is declared as:

function StrToDateNew(
const sDateText: string;
const bDayB4Month: boolean):
TDateTime;

The first parameter is for the input
date, in a text string format, and the
second Boolean parameter tells us
if the day will be encountered
before the month. Within the func-
tion it uses PChar pointers to index
into the input string (without
changing it) and processes the
string in a single pass. It basically
parses the input string, storing text
or numerics, until we change
between text and numeric modes,
at which point we evaluate our
string or number.

The code is shown in Listing 1,
which is on the disk of course,
along with a small test kit. The test
application has two deficiencies: it
uses simple message dialogs to
output the results (no good for
non-interactive test runs) and it
only performs positive tests (test-
ing that various invalid text inputs
do fail is advisable).

So how does the new routine per-
form? Well, it’s quite happy with all
of the following date inputs:
‘1900.1.2’, ‘1900.2.1’, ‘2/1/1900’,
‘1/2/1900’, ‘1900-Jan-2’, ‘1900-2-
Jan’, ‘2 Jan 1900’ and ‘Jan 2 1900’
(provided we pass the day before
month parameter correctly!). As far
as performance goes, in a direct
comparison with DateToString we
are 2.4 times faster (as measured
on my tired little Celeron 300a);
however, it is slower when resolv-
ing month names, but we had to
leave a challenge for the enthusias-
tic and intelligent readers of The
Delphi Magazine!

Martin Lanza (mlanza@zip.com.
au) is an IT professional with 15
years of client server development
experience within the banking
and finance industry, primarily
focused on treasury systems.

